Last time: Icy Moons of the Outer Solar System
- Captured moons vs. primordial moons: orbits and sizes
- Surface modification processes
- Jupiter’s moons - systematics (volcanic/rocky - cold and icy)
- Saturn’s Large Satellites, and Titan
- Moons of Uranus and Neptune

Today: Kuiper Belt objects, asteroids, and meteorites
- Pluto and Kuiper Belt objects
- Asteroids: location, sizes, and compositional families
- Meteorites: irons, stones, stony irons
 - correlation between meteorites and asteroid families
 - some show no evidence of heat processing

Pluto - and beyond
- Discovered in 1930 in search for trans-Neptunian planet
- Extremely small
 - $M = 0.002 \, M_{\text{Earth}} \ (1/6 \, M_{\text{Moon}})$
- Extremely remote
 - orbital period = 248 years
 - eccentric orbit - was closer than Neptune from 1979 through 1999!
- Has a large moon (and several smaller ones)
 - Charon discovered in 1978
 - observed by HST
Pluto

Water ice mountains floating in a sea of soft nitrogen ice
Pluto is not alone out there

- Pluto is one of many “trans-neptunian objects” (TNOs)
- a.k.a. **Kuiper Belt objects (KBOs)**
- 1st KBO found in 1992, Quaoar found in 2002
- ERIS - found in 2005 is 25% bigger than Pluto
Asteroids

swarm of small bodies orbiting (mostly) between Mars & Jupiter

- **Numbers**
 - over 8,000 orbits known
 - brightest still invisible to unaided eye
 - largest = Ceres: 1000km diameter
 - a few dozen bigger than 100 km
 - common size: 10-20 km
 - countless more of smaller size

- **The Main “Asteroid Belt”**
 - semi-major axes between 2.1 and 3.3 a.u.
 - average = 2.81 - very close to Bode prediction!
 - total mass << Mass of our Moon

The Case of the missing planet

Bode’s law (1772) “predicts” semi-major axes

<table>
<thead>
<tr>
<th>#</th>
<th>x 0.3</th>
<th>+ 0.4</th>
<th>=</th>
<th>Pred</th>
<th>Planet</th>
<th>actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3</td>
<td>0.4</td>
<td>=</td>
<td>0.4</td>
<td>Mercury</td>
<td>0.39</td>
</tr>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.4</td>
<td>=</td>
<td>0.7</td>
<td>Venus</td>
<td>0.72</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>0.4</td>
<td>=</td>
<td>1</td>
<td>Earth</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0.3</td>
<td>0.4</td>
<td>=</td>
<td>1.6</td>
<td>Mars</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>0.3</td>
<td>0.4</td>
<td>=</td>
<td>2.8</td>
<td>1801</td>
<td>?</td>
</tr>
<tr>
<td>16</td>
<td>0.3</td>
<td>0.4</td>
<td>=</td>
<td>5.2</td>
<td>Jupiter</td>
<td>5.2</td>
</tr>
<tr>
<td>32</td>
<td>0.3</td>
<td>0.4</td>
<td>=</td>
<td>10</td>
<td>Saturn</td>
<td>9.5</td>
</tr>
<tr>
<td>64</td>
<td>0.3</td>
<td>0.4</td>
<td>=</td>
<td>19.6</td>
<td>Uranus</td>
<td>19.2</td>
</tr>
</tbody>
</table>

Asteroid Groups:

- main belt
- Trojans @ “Lagrangian Points”
- Earth-crossers
- Hidalgo - beyond Jupiter
- Chiron - beyond Saturn
1 Ceres
by DAWN, May 2015

950 km

4 Vesta
by DAWN, July 2011

560 km

Gaspara

Mathilde

Phobos

Ida

Deimos

Types of Asteroids

- C-type (common in outer asteroid belt)
 - extremely dark - low reflectivity
 - 75% of all asteroids
 - no evidence of high mineral content
 - carbon rich

- S-type (silicates - inner belt)
 - spectral evidence for olivine - a silicate mineral

- M-type (rare)
 - metallic iron/nickel

Asteroid origins:

- total mass much less than a small planet
- some evidence of differentiation
- ???
Earth-Crossing Asteroids

~ 1000 objects whose orbits cross 1 a.u.

- **Aten asteroids:**
 - perihelion inside 1 a.u.
 - aphelion beyond 1 a.u.
 - nearly circular orbits
 - about 100 known

- **Apollo asteroids**
 - very elliptical orbits
 - perihelion well inside 1 a.u.
 - aphelion well beyond 1 a.u.
 - all < 8km across

Orbits of potentially hazardous asteroids

- **2002 NY40**
 - August 2002
 - Fick Observatory
 - Duration: 90 seconds!
Asteroids on Earth: Meteors and Meteorites

- **Meteorite**
 - tiny body (<1 cm to ~10 m) entering atmosphere
 - nearly all burn up completely - comet dust?
 - fragment(s) that survive to ground
- **Meteor** - a “shooting star”
 - flash of light as meteoroid burns up
 - 80-90 km high at brightest
- **average meteor rate** - about 7/hr (in a dark sky)
- **BUT: METEOR SHOWERS:**
 - occur when Earth passes through orbit of a comet
 - annual events - up to 60 or more per hour
 - mostly small particles, but still bright meteors
 - appear to radiate from a point in sky: “radiant”
 - i.e. Leonids - Nov 17
Types of Meteorites

primitive or processed, they are all older than dirt

• Stony meteorites (94% of all falls)
 - ordinary chondrites (~80%)
 - chondrules - silicate balls
 - other inclusions - Al, Mg, S
 - achondrites (~10%)
 - stones with no inclusions
 - carbonaceous chondrites (~ 4 %)
 - carbon-rich inclusions
 - complex organic molecules (amino acids)
 - water-rich chondrules - never melted!

• Iron meteorites (5% of all falls)
 - nearly pure iron/nickel alloy
 - large crystals - very slow cooling

• Stony- Iron meteorites (1% of all falls)
 - mixture of iron and silicates

Meteorites and Asteroids

- Irons (M-type asteroids):
 - ages of 4.6 Gyr - among oldest objects known
 - clear evidence of melting, and slow cooling
 - remnant of a differentiated protoplanetary core
 - size of body > 100 km

- Ordinary chondrites: (S-type asteroids)
 - also 4.6 Gyr old
 - matrix and chondrules - once molten
 - possible crust/mantle of parent body
 - others maybe from never-differentiated bodies

- Carbonaceous chondrites: (C-type asteroids)
 - some inclusions possibly older than 4.6 Gyr
 - water-rich minerals, fragile carbon compounds never melted!
 - pristine material out of which planets formed?

most are leftovers from formation of the planets