Reading: Chapter 6, Sect. 6.4; Chapter 14 + assignment posted on Astro 150 Canvas Homework: questions on special reading - submit before recitations on Wednesday Exam 1: Wednesday, September 16 in recitation: review materials posted soon on Canvas

### Last time: The Telescope (and where to put it)

- ultimate goal every photon. The telescope as light bucket.
- size matters bigger = more photons and better resolution
- different configurations for different purposes

### Today: What to do with those photons

- instrumentation squeezing info out of all photons
- getting around (or above) the atmosphere is critical
- · astronomy from space provides access to all wavelengths

Astro 150 Fall 2020: Lecture 7 page2

# What do we do with the image?

- Look at it (with an eyepiece)!
- Imaging



- brightness as a function of position
- Photometry



- accurate measurement of brightness
- Spectroscopy



brightness as a function of wavelength

**Imaging** 

accurate measure of brightness as a function of position

- Photographic Plate (so... 20th century...)
  - covers large areas
  - permanent image (> 100 years!)

Edwin Hubble at the Palomar Schmidt



- very inefficient (<< 10%)
- · small "dynamic range"
- "nonlinear" sensitivity they get tired! Photographic Plate (so... 20th century...)

### **Charge Coupled Devices (CCDs)**

- array of tiny photodetectors on a single chip
- read out directly into computer
- efficiency approaches 100 %
- large dynamic range
- linear sensitivity
- but:
  - small area of sky coverage
  - need lots of devices lots of memory and computer horsepower

# Palomar Plate vs. consumer CCD



Hydrogen a:
6563 Angstroms
(Red)

Oxygen III:
5007 Angstroms
(Green)

Composite color image

Astro 150 Fall 2020: Lecture 7 page 6

# **Photometry**

accurate measure of brightness (as a function of time, color, . . .)

- Photomultiplier (old school...)
  - electronic tube to amplify weak signals
  - COUNTS PHOTONS! -



• precise, fast, but inefficient (<30%)

• CCDs

# Aperture photometry

(multiple PMTs or 1 CCD)



CCD Frame (10 s duty cycle!)

the raw data - 3 channel photometry



# sky background subtracted from target



# target divided by comparison



# **Spectroscopy**

measurement of brightness as a function of wavelength







# Telescope Performance

### Optical Accuracy

- required surface accuracy to a fraction of a wavelength
- optical telescope 1/10,000,000 inch
- radio telescope 1mm

### Mechanical Accuracy

 pointing (and hold) to resolution limit (i.e. << 1 arc second for optical telescopes)</li>

### • Environment

- minimize light pollution
- stable atmosphere ('good seeing')
- go up, up up!
  - aircraft
  - balloons / sounding rockets
  - space





### **Ground-based**

### Advantages

- · relatively inexpensive per unit aperture
- · unlimited size of optics and instruments
- "easy" access for upgrades / repairs / novel uses

### **Disadvantages**

- limited coverage of electromagnetic spectrum
- atmospheric "seeing" blurring by atmosphere
- · useful at most half the time: weather, sunlight, moonlight

### • Space-based

### **Advantages**

- · access to the entire electromagnetic spectrum
- free from atmospheric distortion
- · continuous observation without interruption from Sun, Moon, weather

Ground

Space

### **Disadvantages**

- extremely expensive to develop, deploy, and operate
- limited lifetime, expensive or impossible to upgrade or repair
- limited aperture and data delivery rate

Adaptive Optics (AO

remove blurring effects of atmosphere

- sense changing atmosphere & compensate by 'reverse blurring' image with deformable mirror
- technique developed by ISU Alum Robert Fugate



Keck laser guide star



# **Astronomy from Space**

- The Hubble Space Telescope: 1990 2020+?
  - 2.4 meter diameter reflector
  - UV Optical IR sensitivity
  - astronaut serviceable (4 servicing missions)
    - on-orbit repair / replacement of parts
    - installation of upgraded instruments
  - current instruments
    - ACS: Advanced Camera for Surveys
    - NICMOS: Near IR Camera / Multi Object Spectrograph
    - COS: Cosmic Origins Spectrograph
    - WFC3: Wide Field Camera, v.3

### Other Active Space Telescopes

- Spitzer Space Telescope (Infrared) (2003 2009/19)
- Chandra X-Ray Telescope (X-ray) (1999 2020+)
- Fermi : Gamma Ray Telescope (2008 2020+)





















Next up - James Webb Space Telescope scheduled launch: October 31, 2021



# Next up - James Webb Space Telescope scheduled launch: October 31, 2021



# Next up - James Webb Space Telescope scheduled launch: October 31, 2021