Reading: Chapter 14, 15

Exam 1: Wednesday, Sept. 16 - in recitation - review and sample posted

We will use the Respondus Lockdown Browser - be sure to download and try it out beforehand

Last time: What to do with those photons

- instrumentation squeezing info out of all photons
- getting around (or above) the atmosphere is critical
- · astronomy from space provides access to all wavelengths

Today: Our Sun - a star, up close and personal

- our local star, the Sun, is the touchstone for all of stellar astronomy
- what we see at and above the surface of the Sun tells us about how its energy eventually gets out into space
- The Sun is a dynamic powerhouse of light, magnetism, and turbulence.

The Vital Statistics of the Sun

<u>Distance</u>: 1.5×10⁸ km Kepler's 3rd law Angular size & distance September 1.5×10⁸ km angular size & distance September 1.5×10⁸ km angular size & distance September 1.5×10⁸ km Kepler's 3rd law Angular size & display 1.5×10⁸ km Angular size & display

angular size & distance solar constant & distance

Composition: spectroscopy

Hydrogen	73.4%	by mass
Helium	24.8%	"
Oxygen	0.8%	"
Carbon	0.4%	" "
everything else	0.6%	"

i.e. Silver ~ 0.00000066% (still, that's 5×10^{20} tons of silver in the Sun!)

1868: Lockyer & Jansen find spectral lines in Sun never seen on Earth -> Helium proposed as a new element

1891: Helium finally discovered on Earth

The 'surface' of the Sun:

the **Photosphere**

- T ~ 5800K
- Granulation
 - cells of rising gases (~1000 km across)
 - give mottled appearance to photosphere

- Sunspots
 - relatively cooler than photosphere (T ~ 4500K
 - site of strong magnetic fields

SOHO satellite image of a sunspot at and below the solar photosphere (using helioseismology)

The Chromosphere

- cooler (and hotter) layer above photosphere
- dominated by (red) light of hydrogen emission
- Prominences
 - material suspended above photosphere
- Flares
 - giant eruptions

The Solar Corona

- rarefied outer solar atmosphere
 - visible during eclipses or from space
- strange emission lines
 - identified as highly ionized heavy elements
 - T ~ 2,000,000K

Optical image (eclipse)

Extreme UV (space)

The Solar Cycle

Astro 150 Fall 2020 Lecture 8 page 12

- number of spots changes over 11 year cycle
- magnetic polarity (N/S) of spots flips every 11 years

—> whole pattern repeats every 22 years

The Butterfly Diagram

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

Parker Solar Probe

Limb Darkening:

Astro 150 Fall 2020 Lecture 8 page 18

inside the sun

The Inside of the Sun:

- What keeps the Sun shining?
- What keeps the Sun from collapsing?
 - Mechanical Structure
 - balance between gravity and gas pressure
 - Thermal Structure
 - production, flow, and escape of radiant energy
 - Energy Source