Reading: Chapter 17, section 17.3; Chapter 18: section 18.2 & 18.4; Chap. 22, through 22.3 for next time OBAFGKM mnemonics: see Discussions Page on Canvas (small extra credit opportunity) #### Last time: Stellar Motions and vital statistics - Stars move among one another in ways we can measure - Motions provide more clues to stellar distance - W/distance we can determine luminosity & do a census of the stars - Luminosity and temperature ranges #### Today: Stellar Families, Masses and Luminosities - Luminosity and temperature correlate the H-R diagram - H-RD reveals distinct groups dominated by the Main Sequence - Masses of stars can be found using binary star systems - The Main Sequence is a sequence of Mass - Mass and Luminosity correlate the M-L relation as a consequence of fundamental physics #### A Census of the Stars Astro 150 Fall 2020: Lecture 12 page 2 Observed Luminosities $$L_{sun}/100,000 \longrightarrow > 100,000 \text{ x } L_{sun}$$ Observed Temperatures 2000K 200,000K - Classification stars of a given spectral type (= temperature) can have vastly different luminosities ranging over factors of several thousand - Need to classify stars by spectral type and luminosity ## 1914: The Hertzsprung-Russell Diagram spectral type as 'X'; luminosity as 'Y' Astro 150 Fall 2020: Lecture 12 page 4 The H-R Diagram: a device to classify stars by spectral type and Luminosity (i.e. T, or color) • Radius on the H-R Diagram $$\frac{L}{L_{sun}} = \left[\frac{R}{R_{sun}}\right]^2 \left[\frac{T}{T_{sun}}\right]^4$$ stars at same L: Higher T -> smaller R stars at same T: Higher $L \rightarrow Bigger R$ • biggest stars: upper right-hand corner of H-R Diagram # Radius on the H-R Diagram Astro 150 Fall 2020: Lecture 12 page # Features on the H-R Diagram #### • The Main Sequence - diagonal band - 90% of all stars are Main Sequence stars #### The Giants - upper right - high L, low T -> huge size; 100 R_{SUD} and more! #### White Dwarfs - lower left - \bullet low L, ~high T -> tiny size; 0.01 $R_{\mbox{sun}}$ and less # Features on the H-R Diagram # H-R diagram for all stars with Gaia (space) parallaxes (distance limited) Astro-150 Fall 2020: Lecture 12 page # H-R diagram for brightest stars in the sky (brightness limited) # Main Sequence stars are the most numerous BUT The most prominent stars in our sky are the rare but luminous blue main sequence, giants and supergiants - Why such variety? - What makes stars so different from one another? - What are we missing? MASS! Astro 150 Fall 2020: Lecture 12 page 10 # Measuring Stellar Masses: Binary Stars • Kepler's Third Law - for binary stars • The See Saw Law sum and ratio of masses allows determination of the individual masses of each star Credit: R. Pogge, OSU # Types of binary stars M1/M2=3.6; e=0.0 #### Visual - widely separated (10-100 a.u. and more) - know d₁+d₂, d₂/d₁, P (sometimes) #### Spectroscopic - spectral lines show periodic Doppler shifts - too close to see individual stars - know d₂/d₁ (from velocities), P #### Eclipsing - brightness variations as stars eclipse one another - know P, shapes of stars, light distribution #### Eclipsing spectroscopic - rare - provide d_1+d_2 , d_2/d_1 , P and so masses - radii from eclipses and orbital velocities # **Castor** - a visual binary Sirius - a shorter-period visual binary # Sirius - a shorter-period visual binary (Bond et al. 2017) ## • Eclipsing binary #### • Eclipsing binary # Types of binary stars - Visual - widely separated (10-100 a.u. and more) - know d₁+d₂, d₂/d₁, P (sometimes) #### Spectroscopic - spectral lines show periodic Doppler shifts - too close to see individual stars - know d₂/d₁ (from velocities), P #### Eclipsing - brightness variations as stars eclipse one another - know P , shapes of stars, light distribution #### Eclipsing spectroscopic - rare - provide d_1+d_2 , d_2/d_1 , P and so masses - radii from eclipses and orbital velocities - more than 50% of stars are in binary or multiple systems - BUT only about 100 can be used to measure accurate stellar masses - Key Observation: Stars with the same mass have the same spectral type... on the Main Sequence #### **Key Observation:** # Stars with the same mass have the same spectral type... on the Main Sequence #### Properties of Main Sequence Stars | # in Galaxy for each
O star | L/L _{sun} | M/M _{sun} | R/R _{sun} | Example | |--------------------------------|--------------------|--------------------|--------------------|-------------------| | 1 | 260,000 | 20 | 10 | Rigel | | 100,000 | 60 | 3 | 2.5 | Vega | | 1,000,000 | 1 | 1 | 1 | Sun,
Capella | | 5,000,000 | 0.06 | 0.4 | 0.6 | Barnard's
Star | - Lower mass limit of Main Sequence: 0.08 M_{sun} - stars less massive don't get hot enough to burn hydrogen - Upper mass limit: ~ 200 M_{sun} - \bullet if M > 100 M_{sun}, violently unstable # Main Sequence Extremes High Mass: R136a1 at ~300 M_{sun} Low Mass: an 'L' Dwarf at 0.077 M_{sun} VITNACO reb. 19, 2003 Mist 22, 2003 Mist 22, 2003 Mist 22, 2003 Mist 22, 2003 Mist 24, 25, 2000 Mist 26, 2003 TRAPPIST-1: L =0.0005 L_{sun} M=0.08 M_{sun} # The Mass-Luminosity Relation # The Mass-Luminosity Relation - Eddington (1926): - $L \propto M^4$ for main sequence stars - Main sequence is a sequence in MASS blue stars are more massive than red stars - The Sun is a M.S. star - The Sun burns hydrogen in its core - all M.S. stars burn hydrogen in their cores