Last time: Stellar Motions and vital statistics

- Stars move among one another - in ways we can measure
- Motions provide more clues to stellar distance
- W/distance we can determine luminosity \& do a census of the stars
- Luminosity and temperature ranges

Today: Stellar Families, Masses and Luminosities

- Luminosity and temperature correlate - the H-R diagram
- H-RD reveals distinct groups - dominated by the Main Sequence
- Masses of stars can be found using binary star systems
- The Main Sequence is a sequence of Mass
- Mass and Luminosity correlate - the M-L relation as a consequence of fundamental physics

A Census of the Stars

- Observed Luminosities

$\mathrm{L}_{\text {sun }} / 100,000 \longrightarrow 100,000 \times \mathrm{L}_{\text {sun }}$

- Observed Temperatures
$2000 \mathrm{~K} \quad 200,000 \mathrm{~K}$

- Classification

stars of a given spectral type (= temperature) can have
vastly different luminosities ranging over factors of several thousand

- Need to classify stars by
spectral type and luminosity

1914: The Hertzsprung-Russell Diagram

 spectral type as ' X '; luminosity as ' Y '

The H-R Diagram: a device to classify stars by spectral type and Luminosity (i.e. T , or color)

- Radius on the H-R Diagram
stars at same L: Higher T \rightarrow smaller R
$\frac{\mathbf{L}}{\mathbf{L}_{\text {sun }}}=\left[\frac{\mathbf{R}}{\mathbf{R}_{\text {sun }}}\right]^{2}\left[\frac{\mathbf{T}}{\mathbf{T}_{\text {sun }}}\right]^{4}$
stars at same T
Higher L \rightarrow Bigger R
- biggest stars: upper right-hand corner of H-R Diagram

Radius on the H-R Diagram

Features on the H-R Diagram

- The Main Sequence

- diagonal band
- 90% of all stars are Main Sequence stars

- The Giants

- upper right

- high L , low T -> huge size; $100 \mathrm{R}_{\text {sun }}$ and more!

- White Dwarfs

- lower left
- low L, ~high T -> tiny size; 0.01 $\mathrm{R}_{\text {Sun }}$ and less

Features on the H-R Diagram

H-R diagram for all stars with Gaia (space) parallaxes (distance limited)

H-R diagram for brightest stars in the sky (brightness limited)

Sopetrin classfiction

Main Sequence stars are the most numerous BUT

The most prominent stars in our sky are the rare but luminous blue main sequence, giants and supergiants

- Why such variety?
- What makes stars so different from one another?
- What are we missing? MASS!

Measuring Stellar Masses: Binary Stars

- Kepler's Third Law - for binary stars

- The See Saw Law

$$
\frac{M_{1}}{M_{2}}=\frac{d_{2}}{d_{1}}
$$

- sum and ratio of masses allows determination of the individual masses of each star

Reflex Orbital Motion

Types of binary stars

- Visual
- widely separated (10-100 a.u. and more)
- know $d_{1}+d_{2}, d_{2} / d_{1}, P$ (sometimes)
- Spectroscopic
- spectral lines show periodic Doppler shifts
- too close to see individual stars
- know $\mathrm{d}_{2} / \mathrm{d}_{1}$ (from velocities), P
- Eclipsing
- brightness variations as stars eclipse one another
- know P, shapes of stars, light distribution
- Eclipsing spectroscopic - rare
- provide $\mathrm{d}_{1}+\mathrm{d}_{2}, \mathrm{~d}_{2} / \mathrm{d}_{1}, \mathrm{P}$ and so masses
- radii from eclipses and orbital velocities

Castor - a visual binary

Sirius - a shorter-period visual binary (Bond et al. 2017)

Sirius - a shorter-period visual binary

 (Bond et al. 2017)

Reflex Orbital Motion - Spectroscopic Binary

Credit: R. Pogge, OSU

- Eclipsing binary

- Eclipsing binary

We soe ligh from al of B, some of A.

Wo see light from both A and 8 .

Types of binary stars

- Visua

- widely separated (10-100 a.u. and more)
- know $\mathrm{d}_{1}+\mathrm{d}_{2}, \mathrm{~d}_{2} / \mathrm{d}_{1}, \mathrm{P}$ (sometimes)

- Spectroscopic
- spectral lines show periodic Doppler shifts
- too close to see individual stars
- know di/d (from velocities), P
- Eclipsing
- brightness variations as stars eclipse one another
- know P , shapes of stars, light distribution
- Eclipsing spectroscopic - rare
- provide $d_{1}+d_{2}, d_{2} / d_{1}, P$ and so masses
- radii from eclipses and orbital velocities
- more than 50% of stars are in binary or multiple systems
- BUT only about 100 can be used to measure accurate stellar masses
- Key Observation:

Stars with the same mass have the same spectral type... on the Main Sequence

Key Observation:
Stars with the same mass have the same spectral type... on the Main Sequence

Properties of Main Sequence Stars

in Galaxy for each ostar	$\mathrm{L} / \mathrm{L}_{\text {sun }}$	$\mathrm{M} / \mathrm{M}_{\text {sun }}$	$\mathrm{R} / \mathrm{R}_{\text {sun }}$	Example
1	260,000	20	10	Rigel
100,000	60	3	2.5	Vega
$1,000,000$	1	1	1	Sun, Capella
$5,000,000$	0.06	0.4	0.6	Barnard's Star

- Lower mass limit of Main Sequence: $0.08 \mathrm{M}_{\text {sun }}$
- stars less massive don't get hot enough to burn hydrogen
- Upper mass limit: ~ $200 \mathrm{M}_{\text {sun }}$
- if $\mathrm{M}>100 \mathrm{M}_{\text {sun }}$, violently unstable

Main Sequence Extremes

Astro 150 Fall 2020: Lecture 12 page 24
TRAPPIST-1: $\mathrm{L}=0.0005 \mathrm{~L}_{\text {sun }} \mathrm{M}=0.08 \mathrm{M}_{\text {sun }}$

The Mass-Luminosity Relation

The Mass-Luminosity Relation

- Eddington (1926):
$\mathbf{L} \propto \mathbf{M}^{4}$ for main sequence stars
- Main sequence is a sequence in MASS
blue stars are more massive than red stars
- The Sun is a M.S. star
- The Sun burns hydrogen in its core
- all M.S. stars burn hydrogen in their cores

