Reading: Chapter 17, section 17.3; Chapter 18: section 18.2 & 18.4; Chap. 22, through 22.3 for next time OBAFGKM mnemonics: see Discussions Page on Canvas (small extra credit opportunity)

Last time: Stellar Motions and vital statistics

- Stars move among one another in ways we can measure
- Motions provide more clues to stellar distance
- W/distance we can determine luminosity & do a census of the stars
- Luminosity and temperature ranges

Today: Stellar Families, Masses and Luminosities

- Luminosity and temperature correlate the H-R diagram
- H-RD reveals distinct groups dominated by the Main Sequence
- Masses of stars can be found using binary star systems
- The Main Sequence is a sequence of Mass
- Mass and Luminosity correlate the M-L relation as a consequence of fundamental physics

A Census of the Stars

Astro 150 Fall 2020: Lecture 12 page 2

Observed Luminosities

$$L_{sun}/100,000 \longrightarrow > 100,000 \text{ x } L_{sun}$$

Observed Temperatures

2000K 200,000K

- Classification
 stars of a given spectral type (= temperature) can have
 vastly different luminosities ranging over factors of several thousand
- Need to classify stars by spectral type and luminosity

1914: The Hertzsprung-Russell Diagram

spectral type as 'X'; luminosity as 'Y'

Astro 150 Fall 2020: Lecture 12 page 4

The H-R Diagram: a device to classify stars by spectral type and Luminosity

(i.e. T, or color)

• Radius on the H-R Diagram

$$\frac{L}{L_{sun}} = \left[\frac{R}{R_{sun}}\right]^2 \left[\frac{T}{T_{sun}}\right]^4$$
stars at same L:
Higher T -> smaller R

stars at same T: Higher $L \rightarrow Bigger R$

• biggest stars: upper right-hand corner of H-R Diagram

Radius on the H-R Diagram

Astro 150 Fall 2020: Lecture 12 page

Features on the H-R Diagram

• The Main Sequence

- diagonal band
- 90% of all stars are Main Sequence stars

The Giants

- upper right
- high L, low T -> huge size; 100 R_{SUD} and more!

White Dwarfs

- lower left
- \bullet low L, ~high T -> tiny size; 0.01 $R_{\mbox{sun}}$ and less

Features on the H-R Diagram

H-R diagram for all stars with Gaia (space) parallaxes (distance limited)

Astro-150 Fall 2020: Lecture 12 page

H-R diagram for brightest stars in the sky (brightness limited)

Main Sequence stars are the most numerous BUT

The most prominent stars in our sky are the rare but luminous blue main sequence, giants and supergiants

- Why such variety?
- What makes stars so different from one another?
- What are we missing? MASS!

Astro 150 Fall 2020: Lecture 12 page 10

Measuring Stellar Masses: Binary Stars

• Kepler's Third Law - for binary stars

• The See Saw Law

 sum and ratio of masses allows determination of the individual masses of each star

Credit: R. Pogge, OSU

Types of binary stars

M1/M2=3.6; e=0.0

Visual

- widely separated (10-100 a.u. and more)
- know d₁+d₂, d₂/d₁, P (sometimes)

Spectroscopic

- spectral lines show periodic Doppler shifts
- too close to see individual stars
- know d₂/d₁ (from velocities), P

Eclipsing

- brightness variations as stars eclipse one another
- know P, shapes of stars, light distribution

Eclipsing spectroscopic - rare

- provide d_1+d_2 , d_2/d_1 , P and so masses
- radii from eclipses and orbital velocities

Castor - a visual binary

Sirius - a shorter-period visual binary

Sirius - a shorter-period visual binary

(Bond et al. 2017)

• Eclipsing binary

• Eclipsing binary

Types of binary stars

- Visual
 - widely separated (10-100 a.u. and more)
 - know d₁+d₂, d₂/d₁, P (sometimes)

Spectroscopic

- spectral lines show periodic Doppler shifts
- too close to see individual stars
- know d₂/d₁ (from velocities), P

Eclipsing

- brightness variations as stars eclipse one another
- know P , shapes of stars, light distribution

Eclipsing spectroscopic - rare

- provide d_1+d_2 , d_2/d_1 , P and so masses
- radii from eclipses and orbital velocities

- more than 50% of stars are in binary or multiple systems
- BUT only about 100 can be used to measure accurate stellar masses
- Key Observation:
 Stars with the same mass have the same spectral type... on the Main Sequence

Key Observation:

Stars with the same mass have the same spectral type... on the Main Sequence

Properties of Main Sequence Stars

# in Galaxy for each O star	L/L _{sun}	M/M _{sun}	R/R _{sun}	Example
1	260,000	20	10	Rigel
100,000	60	3	2.5	Vega
1,000,000	1	1	1	Sun, Capella
5,000,000	0.06	0.4	0.6	Barnard's Star

- Lower mass limit of Main Sequence: 0.08 M_{sun}
 - stars less massive don't get hot enough to burn hydrogen
- Upper mass limit: ~ 200 M_{sun}
 - \bullet if M > 100 M_{sun}, violently unstable

Main Sequence Extremes High Mass: R136a1 at ~300 M_{sun} Low Mass: an 'L' Dwarf at 0.077 M_{sun} VITNACO reb. 19, 2003 Mist 22, 2003 Mist 22, 2003 Mist 22, 2003 Mist 22, 2003 Mist 24, 2003 Mist 25, 2000 Mist 26, 2003 Mist

TRAPPIST-1: L =0.0005 L_{sun} M=0.08 M_{sun}

The Mass-Luminosity Relation

The Mass-Luminosity Relation

- Eddington (1926):
 - $L \propto M^4$ for main sequence stars
- Main sequence is a sequence in MASS blue stars are more massive than red stars
- The Sun is a M.S. star
 - The Sun burns hydrogen in its core
- all M.S. stars burn hydrogen in their cores