Reading: Chapter 25

Exam 2: Tomorrow, Oct 21 in recitation

Last time: More bizarre endings - black holes etc.

- gravity's ultimate victory: black holes
- finding black holes by their influence on their surroundings
- black hole phenomenology and general relativity in action

Today: The Milky Way Galaxy

- Stars, gas, dust, cluster are all part of the Milky Way Galaxy
- The MW Galaxy has neighborhoods, populations, etc. that belie the history of its formation and evolution
- the structure of the Milky Way nucleus, halo, and spiral arms
- we know the mass of the Milky Way by mapping the orbits of stars, clusters, and clouds around the galactic center
- ours is a 'spiral' galaxy with spiral arms that are shaped by complex dynamics

We've now studied:

- stars
- star clusters
- molecular clouds (stellar nurseries...)
- \bullet interstellar gas (HI, HII, ...) and dust
- stellar corpses (white dwarfs, neutron stars, ...)

All are components of our GALAXY:

Astro 150 Fall 2020: Lecture 19 page4

Stellar Populations in the Milky Way

- Population I Stars in the Disk
 - massive stars (open clusters)
 - orbit within disk of galaxy
 - "metal" abundance same as Sun or more
- Population II Stars in the Halo
 - very low metal abundances
 - orbits way out of galactic plane
 - low mass stars (globular cluster)
- Populations as clues to the formation of the Milky Way
 - Pop II stars: relics of earliest star formation in the M.W.
 MOTION: initial collapse of the Galaxy

LOW METALS: primordial (uncooked) material

Pop I Stars: more recently formed
 HIGH METALS: stars formed from debris of older stars

Astro 150 Fall 2020: Lecture 19 page

Population I starts ordered motion, Circular orbits in the disk plane, younger, more metal-rich.

Population II stars: random motion. Eccentric orbits passing through disk. plane: older, more metal-poor.

Probing the structure of the Galaxy:

Galactic Rotation

• differential rotation

• inner parts rotate faster than outer parts

• orbital period of Sun: 230,000,000 years

• the Sun is 20 galactic years old

• distance to MW center: 8,500 pc

• Mass of Milky Way (via Kepler's Laws): 10¹¹ M_{sun}

the 'dark matter' issue

Astro 150 Fall 2020: Lecture 19 page 12

• Mass of Milky Way (via Kepler's Laws): 10¹¹ M_{sun}

"Expected" Galactic Rotation Speeds

the 'dark matter' issue

• Mass of Milky Way (via Kepler's Laws): 10¹¹ M_{sun}

Astro 150 Fall 2020: Lecture 19 page 14

Tracing the structure of the Milky Way

• Globular clusters: spherical halo of old stars

Tracing the structure of the Milky Way

- Young O,B Stars: delineate spiral arms
 - most luminous stars around
 - dust blocks more distant ones
 - we live in the "Orion Arm"

Tracing the structure of the Milky Way

- HI 21cm and Molecular Cloud maps
- Each line-of-sight has many clouds at different distances
- <u>Use differential rotation</u> of galaxy to estimate:
 - cloud distance using cloud radial velocity

Astro 150 Fall 2020: Lecture 19 page 18

Tracing the structure of the Milky Way

- HI 21cm and Molecular Cloud maps
- IR, Radio mapping
- differential rotation to get distances

What keeps spiral galaxies spiral?

- Age of Galaxy:
 - ~ 12 billion years
 - •~ 50 galaxy rotations
- differential rotation: arms would have wound up long ago
- youngest stars found in arms...
- Arms must be *fixed patterns* through which stars move.
- Spiral Density Wave Theory:

Astro 150 Fall 2020: Lecture 19 page 22

no obstruction needed...

Spiral Density Waves

- Arms must be fixed patterns through which stars and gas move.
- Localized density increase —> enhanced star formation

Astro 150 Fall 2020: Lecture 19 page 24

Spiral Density wave - close-up

Young blue stars are found on outer edge of spiral arm.

lonization nebulae arise where newly forming blue stars are ionizing gas clouds.

Massive black hole in MW center

X-Ray, Optical, and IR APOD - 11/11/09

NuStar & Chandra- observations of a flare in the MW center

Massive black hole in MW center $3x10^6\ M_o$

IR -adaptive optics, Keck

