For Recitation Tomorrow: read about Dark Matter using link on Canvas

Reading: Chapter 19, Sect. 19.3, Chapter 26, Sect. 26.4-26.5 Reading for next time: Chapter 28, Section 28.2, Chapter 27

Last time: Galaxy Morphologies

- dozens of galaxies lie near the Milky Way in our "local group"
- Spirals come in many forms, but most galaxies are not spirals, but ellipticals or irregular
- Galaxy mergers and collisons are responsible for making ellipticals and irregulars from spirals

Today: Galaxy Distances and Motions

- By using variable stars and other "standard candles" we can measure the distance to other galaxies across the known Universe
- The 'Hubble Law' we live in an expanding universe

Galaxy Distances:

Astro 150 Fall 2020: Lecture 21 page 2

The Cosmic Distance "Ladder"

Galaxy Distances:

The Cosmic Distance "Ladder"

- Step 1: Nearby stars and clusters to ~1000 pc
 - trig. parallax to ~ 1000 pc (Hipparcos)
 - main sequence fitting / stat. parallax to ~ 30,000 pc
- Step 2: "Nearby" Galaxies
 - Cepheid Variable Stars
 - · luminous core He- burning stars that pulsate
 - Pulsation period proportional to luminosity:
 - Period-Luminosity Relation for Cepheids:
 - longer period <-> higher luminosity

Period→**Luminosity**

+ apparent magnitude → distance

accurate to ~ 20% or better out to 20 Mpc!

Cepheid variable stars

Astro 150 Fall 2020: Lecture 21 page 4

The P-L relation

- 1912: Henrietta Leavitt finds the "Period-Luminosity Relation"
- Cepheids are intrinsically very bright
 - visible in distant galaxies
 - in SMC all at ~same distance
 - plot brightness (m) vs. Period (P)...

Astro 150 Fall 2020: Lecture 21 page 6

Cepheids as "Standard Candles"

• intrinsic brightness depends only on period!

- accurate to ~20% or better out to 20 Mpc
- Examples:
 - 4 d period Cepheid in U Mi. m=2.24 (96.8 pc) POLARIS
 - 20 d period Cepheid in Andromeda: m= 19.8 (0.75 Mpc)
 - 20 d Cepheid in NGC 3351 (Virgo clust): m= 25.5 (10 Mpc)

"I am constant as the Northern Star..."

Julius Caesar Act III, Scene 1, line 60 Shakespeare, 1599

Astro 150 Fall 2020: Lecture 21 page 8

"I am constant as the Northern Star..." Julius Caesar Act III, Scene 1, line 60

Julius Caesar Act III, Scene 1, line 60 Shakespeare, 1599

- but... the North Star (Polaris) is a Cepheid!
- 314 years after Shakespeare:

• P-L relation distance for Polaris = 314 light years!

Galaxy Distances:

Astro 150 Fall 2020: Lecture 21 page 14

Step 3: Beyond Cepheids (20 Mpc - 1000 Mpc)

- Tully-Fisher Relation
 - width of spectral lines → mass of galaxy

── Luminosity → Distance

- Average Galaxy Characteristics
 - luminosity of brightest HII region
 - luminosity of planetary nebulae
 - luminosity/size of galaxy type

Step 4: Beyond 1000 Mpc

- Type la Supernovae (out to 3000 Mpc)
- brightest galaxy in cluster (???)

Astro 150 Fall 2020: Lecture 21 page 1

Type la Supernovae as distance indicators

- white dwarfs tipped over 1.4Mo
- very uniform explosion properties
- visible to very large distances

Galaxy Motions (radial velocity only)

- 1920s: Hubble & Slipher
 - survey of galaxy distances and radial velocities
 - most galaxies show red shifts
 - larger redshift →

more distant galaxy

The Hubble Law

- Velocity = H_o x distance
- H_o = the Hubble Constant [units of km/s/Mpc]

Astro 150 Fall 2020: Lecture 21 page 18

The Hubble Law

- H_O is the "Holy Grail" of modern astronomy:
 - sets the scale of the Universe
 - reflects the age of the Universe
 - hints at the future of the Universe

Astro 150 Fall 2020: Lecture 21 page 20

if ALL distant galaxies are moving away from us, are we at the center of the Universe?

NO!

- in an Expanding Universe
- all galaxies move away from each other
- \bullet farther galaxies move faster (V $_{\scriptscriptstyle \rm M}$ d)

• Expansion gentle on small scales:

Andromeda shows blue shift

"Brooklyn is not expanding"

- the Hubble expansion is an observational consequence of an expanding Universe
- space itself is expanding, carrying galaxies along with it
- this expansion is (locally) gentle, and small compared to gravity on Galactic scales:
 - Between us and Sirius, $v_{exp} \sim 0.6 \text{ mph}$
 - between Andromeda and the Milky Way, it is only 45 km/s outwards
 - gravitational force between Andromeda
 & Milky Way easily overwhelms Universe expansion

