Chapter 17; Section 17.4

Brief review of last time: **Too small to see, too bright to ignore**

- The surfaces of the stars are too small to fully resolve
- Stellar spectra display a range of features that depend on temperature and composition; O B A F G K M

Today: Stellar motions and the distances to the stars

- Parallax can measure distances to stars very accurately
- Proper motion motion measured on the sky; stars are not fixed objects
- Radial motion and the Doppler effect how to know if stars are moving toward or away from us

(do it yourself)

$$d = a/p$$

If a is in AU (a = 1 AU) and p is in arc seconds (1/3600 of a degree), then d is in "parsec"

$$d = \frac{1}{p}$$

distance (parsecs) = 1/parallax (arc seconds)

$$d = \frac{1}{p}$$

- a star with a parallax of 1 arc second lies at a distance of 1 parsec (=3.26 light years)
- example: α Centauri: parallax = 0.77 arc seconds
 - d [pc] = 1/0.77 arc sec= 1.3 pc
 - d [ly] = 1.3 pc x 3.26 ly/pc= 4.2 ly

example: α Centaurus: parallax = 0.77 arc seconds

•
$$d[y] = 1.3 pc x 3.26 ly/pc$$

= 4.2 ly

Putting it in perspective...

 1 arc second is about 0.5 mm as viewed over the length of one football field!

OR

 1 arc second is about the size of the quarter viewed from 3 miles away (across the city of Ames)!!!

Limits for Trigonometric Parallax

- From Earth:
 - smallest measurable parallax: ~0.01 arc sec
 - farthest measurable distance: ~100 pc
 - nearest 20,000 stars
- From space: the Hipparcos Mission (1989-1993)
 - smallest measurable parallax: 0.0014 arc sec
 - farthest distances: 700 pc
 - 120,000 stars out to 700 pc
 - 400,000 fainter stars out to 350 pc
- In progress: Gaia (2013-2022)
 - smallest measurable parallax: 0.000024 arc sec
 - farthest distance: 40,000 pc
 - brightness, position, distance to 1,700,000,000 stars

Trigonometric Parallax and Orion

Stellar Motions

Stellar Motions

Tangential velocity can be written in terms of "proper motion"

Proper Motion

Can think about cars on a highway!

Example: Barnard's Star

http://www.perseus.gr/Astro-Star-Dwarf-Barnard-2010.htm

d = 1.8 pc
PM = 10.3"/yr
$$\longrightarrow$$
 $V_{tan} = 90 \text{ km/s}$
(~200,000 mph)

Example: Barnard's Star

http://www.perseus.gr/Astro-Star-Dwarf-Barnard-2010.htm

d = 1.8 pc
PM = 10.3"/yr
$$\longrightarrow$$
 $V_{tan} = 90 \text{ km/s}$
(~200,000 mph)

Proper Motions in the Big Dipper

Proper Motions in the Big Dipper

70,000 years ago

Today

70,000 years from now

What about radial motion?

Doppler Effect

Doppler Effect (Virtual) Demo

https://astro.unl.edu/classaction/animations/light/dopplershift.html

Warning: need to enable Flash (ugh!)

Doppler Effect in Real Life

Sound waves from a passing car

https://www.youtube.com/watch?v=a3RfULw7aAY

The Doppler Effect is present with light waves too!

Emission/absorption lines shift too

The Doppler Effect is present with light waves too!

Can calculate radial velocity from the red/blue shift of lines

Wavelength of line observed in the star

Other uses for the Doppler Effect: Stellar rotation

Broader lines!

Other uses for the Doppler Effect: Orbital motion

Summary of stellar positions and motions

- Use parallax to get distances to (closest) stars
- Can measure the proper motion (velocity "angle" on the sky)
- Can use both distance and angle velocity to calculate an actual velocity
- Can use the shift of spectral lines to determine radial velocity

Another advantage to knowing distance

Can calculate the actual luminosity!

Brightness =
$$\frac{\text{Luminosity}}{d^2}$$
 Luminosity = Brightness × d^2

Since we can figure out the distance (parallax), we can calculate luminosity

The spectral lines can also give us the *type* of star (OBAFGKM)

Putting all of this together: Hertzsprung-Russell Diagram

More on this next time!