Brief review of last time: Thermal radiation — the light from stars

- Can learn a lot about stars (and other things in the universe) from only looking at light
- Blackbody radiation temperature of a "blackbody radiator" determines the "color" of the object and the shape of the spectrum

Today: Spectral lines and spectroscopy: astronomical fingerprints

- Atoms and molecules produce / absorb specific colors
- 'line spectra' allow determination of elemental content of stars
- Spectra are integral to nearly everything in astronomy

Continuous Spectrum

- Black body properties:
 - Maximum wavelength decreases (bluer) for higher T
 - Total brightness increases with higher T

Blackbody radiation

Fun fact: everyone emits blackbody radiation. We just can't see this radiation with our eyes because it's in the infrared

Stars are close approximations to black bodies

- Wien's law ($\lambda_{max} \propto 1/T$) says
 - a star's color tells you its temperature
 - red stars are cool (T < 5,000K)
 - blue stars are hot (T > 10,000K)

$$\lambda_{\text{max}} = \frac{2.9 \times 10^6}{T[K]} \text{ nm}$$

A more realistic stellar spectrum

Stellar Spectra show Continuum + DARK LINES!?

Gustav Kirchoff's Laws (1850s)

1) Continuous spectrum

solids, liquids, and hot gasses at high pressures (i.e., lots of collisions of atoms/molecules — this makes temperature uniform)

2) Emission (Bright Line) Spectrum hot gas at low pressure

- 3) Absorption (Dark Line) Spectrum transparent gas in front of continuum source
- 3.5) A single element makes emission and absorption lines at the same wavelengths

Gustav Kirchoff's Laws (1850s)

Absorption lines

Remember moving charge picture for continuous spectra

Model for the atom (correct enough for our purposes)

Orbits are "quantized"

(meaning the electrons cannot occupy inbetween orbits)

© 2012 Encyclopædia Britannica, Inc.

Emission lines

photon

Absorption lines

photon

Rent analogy for spectral lines

Cannot live "in between floors" (e.g., 22.5th floor) quantized

To move upward, have to spend money (put money "into the system") - absorption

Condo will give out money if you move to a lower level emission

Gustav Kirchoff's Laws (1850s)

Absorption lines

A more realistic stellar spectrum

Stellar Spectra show Continuum + DARK LINES !?

The Solar Spectrum

What creates these absorption lines in the Sun?

Every ATOM has a UNIQUE set of energy levels = Unique set of Spectral Lines

Spectral lines are the fingerprints of atoms

Solar spectrum, 420 - 430 nm

Iron lamp, 420 - 430 nm

 Spectroscopy provides a Rosetta Stone for astronomy

The Periodic Table

1 H																	2 He
3 Li	4 Be											5 B	6 C	7 N	8	9 F	10 Ne
11	12												14	15	16	17	18
Na	Mg												Si	P	S	CI	Ar
19	20	21	22	23	24	25	²⁶	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
		57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Some examples

An 'emission line nebula' - the Cygnus Loop

Blue - Oxygen II

Green - Oxygen III

Red - Hydrogen

Molecular Spectra

Vibration - also quantized!

Infrared

Molecular Spectra

Rotation - also quantized!

Microwave and radio

Molecular Spectra

Also produces unique signatures! From this, we can actually understand chemistry in space

Molecular spectra can be used to probe the birth materials for planets!

Spectral lines at all wavelengths, including X-rays

Iron K a line

Punchlines

Spectra provide a unique fingerprint of matter

Spectra tell us about many many many things: composition, velocity of source, temperature, ...