Neutron Stars

- $M_{\text{core}} > 1.4 M_{\odot}$ - collapse past WD
 - nuclei packed tightly together
 - protons absorb electrons; only neutrons left
 - collapse halted by neutron degeneracy pressure

- How do you find something so small?

Neutron Stars

- Mass $\sim 2.0 M_{\odot}$
- Radius $\sim 0.00002 R_{\odot}$
- Temperature $\sim 5\times10^5$ K

$$\frac{L}{L_{\odot}} = \left(\frac{R}{R_{\odot}} \right)^2 \left(\frac{T}{T_{\odot}} \right)^4$$

so, $L/L_{\odot} \sim 0.001$ - nearly all in X-ray

SMALL, DIM, and RARE: (end product of O, B star evolution) means:
- closest is still pretty far away
- very unlikely to see in optical (or even X-ray)
- concentrated and extreme stars
why does the Crab Nebula shine?

The Crab Nebula (optical, Fick) remnant of SN in 1054 AD

Discovery of Neutron Stars - Pulsars (1967)

- 1966-67: Tommy Gold (and Franco Pacini)
 - why does the Crab nebula shine???
 - supernova leaves a rapidly rotating neutron star
 - neutron star has an intense magnetic field
 - light produced by motion of e⁻ in magnetic field
 - energy for light derived from NS rotation
 - spin rate should decrease with time

The Gold-Pacini “model”

- Concentrated ROTATION
 - Radius shrinks from ~ R_{sun} to ~ $10^{-5} R_{\text{sun}}$
 - Spin rate increases as $1/R^2$, or by a factor of 10^{10}
 - scaling from the Sun's rotation (1 month = 3×10^6 sec) gives a rotation rate for a neutron star of 0.3 milliseconds
 - lots of energy available from neutron star rotation

- Concentrated MAGNETISM
 - Magnetic field of Sun ~ 10 Gauss
 - Field strength increases as $1/R^2$, or by a factor of 10^{10}
 - scaling from the Sun's magnetic field gives a field strength for a neutron star of 10^{11} Gauss
 - for comparison:
 - Earth magnetic field = 1/2 Gauss (compass needle)
 - Strongest permanent magnet ~ 14,000 Gauss
 - Strongest magnetic field produced ~ 4×10^7 Gauss

The Gold-Pacini “model”

- Rapid Rotation + Strong magnetic field = COSMIC GENERATOR / ACCELERATOR
 - central engine surrounded by ionized particles (electrons, protons, ions)
 - particles constrained to move along magnetic field lines
 - crash down onto NS poles, heating up the material
 - additional radiation via synchrotron radiation
The Gold-Pacini “model”

- New Neutron Stars MUST
 - rotate rapidly
 - have strong magnetic fields
 - pump out energy via synchrotron radiation
 - energy lost must come at expense of rotation, so
 - rotation must slow down with time
- Rotating neutron stars could (must?) be the energy source for glowing supernova remnants

Discovery of Neutron Stars - Pulsars (1967)

- **1967: S. Jocelyn Bell** discovers a radio signal:
 - regularly pulsing
 - rapid
 (once every 1.33 seconds)
 - extraterrestrial
 - aliens? LGM1, LGM2, ...
 - no. why not?
 - Neutron stars!

1974 Nobel Prize to... Tony Hewish
(Bell’s advisor ?!#@)

Neutron Star spin-down

- Rotational Energy E:
 - \[E \sim \Omega^2 R^2 \]
 - \[\frac{\Delta E}{\Delta t} \propto 2\Omega \frac{\Delta \Omega}{\Delta t} R^2 \]
 - lose energy (< 0)
 - spin down (< 0)

 - energy loss rate from nebular (and pulsar) emission allows an estimate of the spin-down rate expected for pulsars
- Over time, spin rate drops, so energy available drops
- Pulsars should SLOW DOWN and FADE with time
- Magnetic field drops also (leaks out):
Pulsar Evolution
- magnetic field decay, spin down, dropping luminosity
- young pulsars are
 - fast
 - bright
 - fast spin-down rate
 - strong magnetic field
- old pulsars are
 - slow
 - dim
 - slow spin-down
 - weak(er) magnetic field
- the pulsar “death line”
 - no more e+e- production

Measuring Spin-Down
- time is the thing that we can measure most accurately
- measuring period change directly is very difficult
- but period change <=> accumulating delay in pulse arrival time
- i.e. slow clock by 1/10,000
 - beat-by-beat is the same to 0.1 millisecond BUT
 - in 1 day, clock is 8.6 seconds slow
 - in 1 week clock is 1 minute slow
 - growing effect when compared to reference signal
- ticks lengthen - will get out of sync with lousy clocks eventually!
- reference clock needed - pulsar is its own reference
- Pulsars are the BEST CLOCKS in the UNIVERSE

Pulsars - a new tool for astronomy and physics

- **Binary Pulsars:**
 precise tests of general relativity (1993 Nobel, Hulse & Taylor)
- **Pulsars with Planets**
 timing “jitter” -> planet-sized companions (Alex Wolsczan)
- **Millisecond Pulsars**
 - fast pulsar, small dP/dt
 - recycled pulsars spun-up by companion (Don Backer)
 - should have companion - most do, many do not!
- **“Black Widow” Pulsars**
 pulsar blasts away its companion (Dan Stinebring)

Gamma Ray Bursts
- short-duration, high energy flashes
 - 0.1 to 100 seconds
Gamma Ray Bursts
- short-duration, high energy flashes
- evenly distributed across the entire sky
- cosmological distances - intensely bright supernovae

2704 BATSE bursts

Gamma Ray Bursts
- short-duration, high energy flashes
- evenly distributed across the entire sky
- cosmological distances - hypernovae
 - rapid rotation -> accretion disk
 - relativistic jet collimated by accretion disk
 - beam points towards us, we see gamma ray burst